Analysis 2, Summer 2024 List 5 Review for Exam 1

123. Describe the top half of the circle $x^2 + y^2 = 12$ using parametric equations (or a single vector equation $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$) and a range of t values.

There are several correct answer, including $\vec{r} = \begin{bmatrix} \sqrt{12} \cos t \\ \sqrt{12} \sin t \end{bmatrix}, 0 \le t \le \pi$.

124. Calculate
$$\int_C \cos\left(\frac{\pi y^2}{x}\right) ds$$
, where C is the line segment from $(0,0)$ to $(6,1)$.
Using $\vec{r} = \begin{bmatrix} 6t \\ t \end{bmatrix}$, this is $\int_0^1 \cos\left(\frac{\pi (t)^2}{(6t)}\right) \sqrt{(1)^2 + (6)^2} dt = \sqrt{37} \int_0^1 \cos\left(\frac{\pi}{6}t\right) dt = \begin{bmatrix} \frac{3\sqrt{37}}{\pi} \\ \frac{3\sqrt{37}}{\pi} \end{bmatrix}$
125. Calculate $\iint_D e^{xy} dA$ where $D = \{(x,y) : 1 \le y \le 8, 0 \le x \le \frac{1}{y}\}$. $\int_1^8 \int_0^{1/y} e^{xy} dx dy$
Inside: $\int_0^{1/y} e^{xy} dx = \frac{e^{xy}}{y} \Big|_{x=0}^{x=1/y} = \frac{e^{x(1/x)}}{y} - \frac{e^0}{y} = \frac{e-1}{y}$.
Outside: $\int_1^8 \frac{e-1}{y} dy = (e-1)(\ln y) \Big|_{y=1}^{y=8} = \boxed{(e-1)\ln(8)}$

126. Calculate $f'_{\hat{u}}(0,2)$ where $f(x,y) = \sin(x^2 + \pi y)$ and \hat{u} is parallel to $\vec{v} = \begin{bmatrix} \sqrt{17} \\ 8 \end{bmatrix}$. $|\vec{v}| = 9$, so $\hat{u} = \begin{bmatrix} \sqrt{17} \\ 9 \end{bmatrix}$, $\frac{8}{9}$ and $f'_{\hat{u}}(0,2) = \begin{bmatrix} 0,\pi \end{bmatrix} \cdot \begin{bmatrix} \sqrt{17} \\ 9 \end{bmatrix}, \frac{8}{9} \end{bmatrix} = \begin{bmatrix} \frac{8}{9}\pi \end{bmatrix}$

127. Find the critical point(s) of $f(x, y) = x^2y - 5x^2 - 4xy + 20x$.

 $\begin{cases} 2xy - 10x - 4y + 20 = 0 \\ x^2 - 4x = 0 \end{cases}$ From the second equation, x = 0 or x = 4. If x = 0 then the first equation becomes 2(0)y - 10(0) - 4y + 20 = 0, or just 20 - 4y = 0, so y = 5. One CP is (0,5). If x = 4 then the second equation becomes 2(4)y - 10(4) - 4y + 20 = 20 - 4y = 0, so y = 5 and the other critical point is (4,5).

128. Find and classify the critical point(s) of $f(x,y) = \ln(-x/y) + ye^x$.

 $\begin{cases} \frac{1}{x} + e^x y = 0 & \textcircled{1}\\ \frac{-1}{y} + e^x = 0 & \textcircled{2} \end{cases}$

From ②, $y = e^{-x}$. With this, ① becomes $\frac{1}{x} + (e^x)(e^{-x}) = 0$, so $\frac{1}{x} + 1 = 0$, so x = -1. Then $y = e^{-(-1)} = e$. The only CP is (-1, e).

$$\mathbf{H}f = \begin{bmatrix} e^x y - \frac{1}{x^2} & e^x \\ e^x & \frac{1}{y^2} \end{bmatrix}. \text{ Thus } D(-1, e) = \frac{-1}{e^2} < 0, \text{ so } (-1, e) \text{ is a saddle}$$

129. Find the unit vector $\hat{u} = [u_1, u_2, u_3]$ such that the rate of change of

$$f(x, y, z) = xz^2 - 11\sin(y) + x$$

at (5, 0, 1) is as large as possible in the direction \hat{u} .

Same direction as $\nabla f(5,0,1)$ because $f'_{\hat{u}} = \hat{u} \cdot \nabla f = |\nabla f| \cos \theta$ is largest when the angle between \hat{u} and ∇ is 0. $\nabla f = [1+z^2,-11\cos y,2xz]$, so $\nabla f(5,0,1) = [2,-11,10]$. This vector has magnitude 15, so $\vec{u} = \frac{1}{15} \nabla f(5,0,1) = [\frac{2}{15},-\frac{11}{15},\frac{2}{3}]$.

130. Find and classify the critical point(s) of $f(x,y) = x^2 - 10x + 13 + 4y + y^2$. (5,-2) is a local min

- 131. For $f(x,y) = x \ln(xy)$ at the point $(3,\frac{1}{3})$, $\nabla f(3,\frac{1}{3}) = [1,9]$
 - (a) in what direction(s) is $f'_{\hat{u}}(3, \frac{1}{3})$ as large as possible? parallel to [1,9]. As a unit vector, this is $\hat{u} = [\frac{1}{\sqrt{82}}, \frac{9}{\sqrt{82}}]$.
 - (b) what is the value of $f'_{\hat{u}}(3, \frac{1}{3})$ for the direction from part (a)? $\sqrt{82}$
 - (c) in what direction(s) is $f'_{\hat{u}}(3, \frac{1}{3})$ as small (most negative) as possible? parallel to [-1, -9]. As a unit vector, this is $\hat{u} = [\frac{-1}{\sqrt{82}}, \frac{-9}{\sqrt{82}}]$.
 - (d) what is the value of $f'_{\hat{u}}(3, \frac{1}{3})$ for the direction from part (c)? $-\sqrt{82}$
 - (e) in what direction(s) is $f'_{\hat{u}}(3, \frac{1}{3})$ equal to zero? parallel to [-9, 1]. As a unit vector, this is $\hat{u} = \left[\frac{-9}{\sqrt{82}}, \frac{1}{\sqrt{82}}\right]$ or $\hat{u} = \left[\frac{9}{\sqrt{82}}, \frac{-1}{\sqrt{82}}\right]$.

132. Let *D* be the region
$$\{(x, y) : -\sqrt{1-y^2} \le x \le 0\}$$
.

(a) Draw this region.

(b) Fill in the blanks
$$\iint_D f \, \mathrm{d}A = \int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{0} f \, \mathrm{d}x \, \mathrm{d}y$$

(c) Fill in the blanks
$$\iint_D f \, \mathrm{d}A = \int_{-1}^{0} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f \, \mathrm{d}y \, \mathrm{d}x$$
.

$$\stackrel{\text{def}}{\asymp} (\mathrm{d}) \text{ Fill in the blanks} \iint_D f \,\mathrm{d}A = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \int_{0}^{\frac{1}{2}} f \,r \,\mathrm{d}r \,\mathrm{d}\theta.$$

$$\stackrel{\text{(e)}}{\approx} \text{(e)} \quad \text{Calculate} \iint_{D} \frac{e^{x^{2} + y^{2}}}{\pi} \, \mathrm{d}A = \int_{0}^{\pi/2} \int_{0}^{1} \frac{e^{r^{2}}}{\pi} r \, \mathrm{d}r \, \mathrm{d}\theta = \frac{\pi}{2} \int_{0}^{1} \frac{e^{u}}{\pi} \, \mathrm{d}u = \boxed{\frac{e - 1}{2}}$$

Double integrals in "polar coordinates" are not part of MAT 1510, so you will not need to do 132(d) or 132(e) on quizzes or exams in this course.

- 133. Let R be the triangle with vertices (0,0), (-6,6), and (6,6), and let the density within this triangle be $\rho(x,y) = y + 1$.
 - (a) Evaluate $\iint_R (y+1) \, dA$. 180 (This is the mass of the triangle.)

- (b) Evaluate $\iint_{R} (y+1)x \, \mathrm{d}A$. 0 (c) Evaluate $\iint_{R} (y+1)y \, \mathrm{d}A$. 792
- (d) The center of mass of the triangle has coordinates $\left(\frac{\text{answer}(b)}{\text{answer}(a)}, \frac{\text{answer}(c)}{\text{answer}(a)}\right)$. Find this point. (0, 4.4)
- 134. For the function $f(x, y) = y \ln(x)$,
 - (a) Give the gradient vector ∇f at the point (3,6). $\begin{bmatrix} 2 \\ \ln 3 \end{bmatrix}$ or $2\hat{i} + \ln(3)\hat{j}$
 - (b) Give the Hessian matrix $\mathbf{H}f$ at the point (3,6). $\begin{bmatrix} -2/3 & 1/3 \\ 1/3 & 0 \end{bmatrix}$
- 135. Give all (three) of the first partial derivatives and all (nine) of the second partial derivatives of

$$f(x, y, z) = z^2 \ln(xy) + \cos(xz).$$

$$\begin{aligned} f'_{x} &= z^{2}/x - z\sin(xz) & f''_{xx} &= -\frac{z^{2}}{x^{2}} - z^{2}\cos(xz) \\ f'_{y} &= z^{2}/y & f''_{xy} &= f''_{yx} = 0 \\ f'_{z} &= 2z\ln(xy) - x\sin(xz) & f''_{xz} &= f''_{xz} = 2z/x - \sin(xz) - xz\cos(xz) \\ f''_{yy} &= -z^{2}/y^{2} \\ f''_{yz} &= f''_{zy} = 2z/y \\ f''_{zz} &= 2\ln(xy) - x^{2}\cos(xz) \end{aligned}$$

- 136. If $\nabla f(x, y, z) = (3x^3 + z)\hat{i} + ze^{yz}\hat{j} + (x + ye^{yz})\hat{k}$, calculate $f''_{xx}(2, 20, -5)$. $f'_x = 3x^3 + z$, so $f''_{xx} = 9x^2$, and $f''_{xx}(2, 20, -5) = 9(2)^2 = 36$.
- 137. If $\nabla g(x,y) = \begin{bmatrix} \sin(x) \\ \sin(y) \end{bmatrix}$, determine whether (0,0) is a local minimum, local maximum, or saddle point of g(x,y).

$$g'_x = \sin(x)$$
 and $g'_y = \sin(y)$, so $\mathbf{H}g = \begin{bmatrix} \cos(x) & 0\\ 0 & \cos(y) \end{bmatrix}$ and $D = \cos(x)\cos(y)$.
Since $D(0,0) = 1$ and $f''_{xx}(0,0) = 1$, the point $(0,0)$ is a local minimum.

- 138. For the function $f(x, y) = xy^2$ at the point (2, 3),
 - (a) calculate the directional derivative $f'_{\hat{u}}(2,3)$ in the direction $\hat{u} = [0,1]$. 12
 - (b) calculate $f'_{\hat{u}}(2,3)$ when the angle between \hat{u} and $\nabla f(2,3)$ is 60°.
 - (c) give a formula using θ for the value of $f'_{\hat{u}}(2,3)$ when the angle between \hat{u} and $\nabla f(2,3)$ is θ . 15 cos(θ)
 - (d) what is the largest possible value of $f'_{\hat{u}}(2,3)$, and for what unit vector \hat{u} does this occur? 15 when $\hat{u} = \boxed{\left[\frac{3}{5}, \frac{4}{5}\right]}$

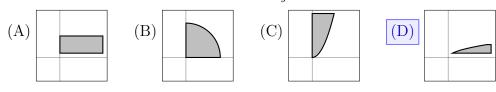
- (e) what is the most negative possible value of $f'_{\hat{u}}(2,3)$, and for what unit vector \hat{u} does this occur? -15 when $\hat{u} = \left[-\frac{3}{5}, -\frac{4}{5}\right]$
- (f) give two unit vectors \hat{u} for which $f'_{\hat{u}}(2,3) = 0$. $\left[-\frac{4}{5},\frac{3}{5}\right]$ and $\left[\frac{4}{5},-\frac{3}{5}\right]$
- 139. Write the system of equations that would be used to find the critical point(s) of

$$f(x,y) = x\sin(xy^3).$$

(Do not attempt to solve the system.)

 $\begin{cases} \sin(xy^3) + xy^3 \cos(xy^3) = 0\\ 3x^2y^2 \cos(xy^3) = 0 \end{cases}$

140. Which region below corresponds to $\int_{1}^{3} \int_{y^2}^{10} x^2 \, dx \, dy$?



141. Which region above corresponds to $\int_{1}^{3} \int_{y^2}^{10} \frac{x}{y} \, dx dy$? SAME AS PREVIOUS!

142. For the function

$$f(x,y) = x^3 - y^x,$$

give a unit vector \hat{u} for which $f'_{\hat{u}}(3,1) = 0$. A unit vector perpendicular to $\nabla f(3,1) = [6,-3]$ is $\frac{2}{\sqrt{5}}\hat{i} - \frac{1}{\sqrt{5}}\hat{j}$ or $\frac{-2}{\sqrt{5}}\hat{i} + \frac{1}{\sqrt{5}}\hat{j}$.

143. Calculate $f'_{-\hat{j}}(3,7)$ for $f(x,y) = \frac{y}{\cos(x^x)}$. Since $\hat{u} = -\hat{j} = [0,-1]$, this will be $\begin{bmatrix} 0\\-1 \end{bmatrix} \cdot \nabla f(3,7) = (0)f'_x(3,7) + (-1)f'_y(3,7) = -f'_y(3,7),$

and we don't need to know f'_x at all. Using $f'_y(x,y) = \frac{1}{\cos(x^x)}$ we get $f'_y(3,7) = \frac{1}{\cos(3^3)} = \frac{1}{\cos(27)}$, and so $f'_{-\hat{j}}(3,7) = \frac{-1}{\cos(27)}$.

P.S. If you are curious, $f'_x = x^x y(\ln(x) + 1) \frac{\sin(x^x)}{(\cos(x^x))^2}$.

144. If f(x, y) is a function for which

$$\begin{array}{ll} f(9,-1)=5 & f(4,7)=6 & f(8,0)=10 \\ f'_x(9,-1)=0 & f'_x(4,7)=0 & f'_x(8,0)=0 \\ f'_y(9,-1)=0 & f'_y(4,7)=1 & f'_y(8,0)=0 \\ f''_{xx}(9,-1)=\frac{1}{2} & f''_{xx}(4,7)=2 & f''_{xx}(8,0)=-6 \\ f''_{xy}(9,-1)=\sqrt{2} & f''_{xy}(4,7)=18 & f''_{xy}(8,0)=0 \\ f''_{yy}(9,-1)=12 & f''_{yy}(4,7)=3 & f''_{yy}(8,0)=-3 \end{array}$$

- (a) is (9, -1) a local minimum, local maximum, saddle, or none of these? $\nabla f(9, -1) = [0, 0]$, so (9, -1) is critical point. $D(9, -1) = 12 \cdot \frac{1}{2} - (\sqrt{5})^2 = 6 - 2 = 4$ is positive, and $f''_{xx}(9, -1) = \frac{1}{2}$ is positive, so (9, -1) is a local min.
- (b) is (4,7) a local minimum, local maximum, saddle, or none of these? $\nabla f(4,7) = [0,1] \neq [0,0]$, so (4,7) is not a critical point and therefore none of local min, local max, saddle.
- (c) is (8,0) a local minimum, local maximum, saddle, or none of these? $\nabla f = [0,0]$ and $D = (-6)(-3) - (0)^2 = 18$ at this point, so it's a local min
- (d) give a vector that is perpendicular to the level curve f(x, y) = 6 at the point (4, 7). $\nabla f(4, 7) = [0, 1]$ and gradient vectors are always perpendicular to level curves, so $\hat{u} = \boxed{[1, 0]}$. It is also correct to use $\hat{u} = [-1, 0]$.

145. Give the Hessian $\mathbf{H}f(x,y)$ of the function f(x,y) for which $\nabla f = \begin{bmatrix} e^{xy}(xy+1) \\ x^2e^{xy} \end{bmatrix}$.

$ye^{xy}(xy+2)$	$xe^{xy}(xy+2)$
$\left\lfloor xe^{xy}(xy+2)\right\rfloor$	$x^3 e^{xy}$

 $\stackrel{\wedge}{\asymp} 146. \text{ Give an example of a function } f(x,y) \text{ for which } \nabla f = \begin{bmatrix} 2x + y^2 e^{xy^2} \\ 2xy e^{xy^2} + 9y^2 \end{bmatrix}.$

This will be some

$$f = x^2 + e^{xy^2} + g(y),$$

where g(y) is a function of y but is constant with respect to x (and so does not affect f'_x at all). For the function $f = x^2 + e^{xy^2} + g$, we have

$$f'_y = 0 + e^{xy^2}(2yx) + g',$$

so in order to match ∇f from the task it must be that $g' = 9y^2$. Therefore $g = 3y^3 + C$, and

$$f = x^2 + e^{xy^2} + 3y^3 + C$$

describes all functions with the given gradient.

147. Re-write

$$\int_0^{\sqrt{3}} \int_x^{\sqrt{3}x} \frac{y}{x^3 + y^2 x} \, \mathrm{d}y \, \mathrm{d}x + \int_{\sqrt{3}}^3 \int_x^3 \frac{y}{x^3 + y^2 x} \, \mathrm{d}y \, \mathrm{d}x$$

as a single iterated integral.

 $\int_0^3 \int_{y/\sqrt{3}}^y \frac{y}{x^3 + y^2 x} \, \mathrm{d}x \, \mathrm{d}y$

- 148. Find the value of $\iint_D \frac{25x^4}{y} dA$ where D is the triangle with vertices (1,1) and (4,4) and (1,4).
 - This can be done as either $\int_{1}^{4} \int_{1}^{y} \frac{25x^{4}}{y} \, dx \, dy = \int_{1}^{4} \left(5y^{4} \frac{5}{y}\right) \, dy = \boxed{1023 10 \ln 2}$ or $\int_{1}^{4} \int_{x}^{4} \frac{25x^{4}}{y} \, dy \, dx = \int_{1}^{4} 25x^{4} (\ln 4 - \ln x) \, dx = \boxed{1023 - 10 \ln 2}$. The second version $(dy \, dx)$ requires integration by parts.
- 149. Evaluate $\int_0^6 \int_{x/2}^3 \sin(\pi y^2) \, dy \, dx$ by reversing the order of integration (that is, by changing to an equivalent integral $dx \, dy$).

The region is a triangle with x = 0 on the left, y = 3 on top, and y = x/2 (which is also x = 2y) as the other side.

$$\int_0^3 \int_0^{2y} \sin(\pi y^2) \, \mathrm{d}x \, \mathrm{d}y = \int_0^3 2y \sin(\pi y^2) \, \mathrm{d}y = \int_0^{9\pi} \frac{1}{\pi} \sin(u) \, \mathrm{d}u = \frac{2}{\pi}$$